
W.E.H. Harcourt-Smith, J. Kaya, E. Delson, NYCT, Vertebrate Paleontology, American Museum of Natural History; New York Consortium in Evolutionary Primatology (NYCEP); NYCEP Morphometrics Group, Institute of Anthropology, University of Vienna; Anthropology, City University of New York Graduate School; Anthropology, Lehman College/CUNY.

One of the central issues surrounding the analysis of primate locomotor assemblages is the utilization of skeletal elements in the correct taxon and, in some cases, to the correct individual. One little studied approach to this issue is the statistical estimation of congruence between reciprocal joint surfaces—that is, the closeness of fit between articulating elements of a joint complex. Acosta et al. conducted a preliminary analysis of talocrural joint congruence in extant hominoids but limited statistical techniques and computing power made it difficult to address the complex 3D relationships between the joint surfaces. In this study we compare and contrast two recently developed techniques of estimating joint congruities and test the effectiveness of each technique in correctly assigning reciprocal elements at the individual and species levels.

Both techniques use three dimensional landmark and semi-landmark data collected from high resolution Laser Surface Scans of the reciprocal surfaces of the human-phalange component of the ribia joint. The sample consists of adult specimens representing 3 species: P. sapiens, P. troglodytes, and Homo sapiens.

The first technique is indirect, and uses Partial Least Squares (Bateson, 2003) and matching by discriminant analysis to assess to what degree two surfaces covary. The second technique is a direct measure of congruence, and is based on the overlap ratio between the two surfaces throughout the range of the joint's motion.

Results show that both techniques confidently assign reciprocal elements at the taxonomic level, and that further refinement will provide a useful tool in matching unassigned skeletal elements. Funded by NSF AC 0108231.