Asia, Western

Geographic region extending from western Turkey to eastern Afganistan and from the Arabian Peninsula and the Persian/Afghan Gulf to the Caucasus and Central Asian republics of the former Soviet Union; it includes what is sometimes referred to as the Near East, the Middle East, or Southwest Asia. Western Asia as used in this work is bounded on the north by Russia, on the east by Pakistan and China, and on the south and west by Europe and the Black, Mediterranean, Red, and Arabian seas. It shares many cultural and ecological features with North Africa (including Egypt), South Asia (Pakistan, India, and Sri Lanka), and southwestern Russia. Despite long and complex cultural and historical interactions among these areas, however, Western Asia is sufficiently distinctive in its ecology and culture to be treated as a separate entity by historians, geographers, and social scientists. The area is considered in the articles Asia, Eastern and Southern, and Russia.

Western Asia encompasses a wide range of habitats—temporal, hyperarid, desert, subtropical, montane—but is generally characterized by long, hot, rainless summers and cooler, wetter winters. Linguistically and culturally diverse in the earliest historic periods five millennia ago, the area is dominated today by Muslims of various sects but is also home to Christians, Jews, Zoroastrians, and other religious minorities distributed among a range of ethnic groups. The region was the setting for most of the first successful experiments in plant cultivation and stock breeding, as well as the earliest civilizations, and current adaptations are marked by complex interactions among sedentary village agriculturalists, mobile guerorvan, and city dwellers.

Our understanding of prehistoric settlement patterns is distorted both by the history of archaeological investigation and the facial character of soil by man- and glacial geomorphological processes. Some areas, like the Arabian Desert and Anatolia, are poorly known; others, especially the Levantite border of the eastern Mediterranean and the Zagros Mountains of Iraq and Iran, have been comparatively well explored. As further research is carried out in western Asia, our understanding of various prehistoric periods will, and of the area's place in the prehistorian world, will continue to improve. The archeology of western Asia is rich and most extensively documented for the Holocene; box it is scattered evidence of occupation earlier in the Pleistocene. Palynological analysis suggests that climate regime and vegetation successions during the late Pleistocene differed from one region to the next, but through much of the past 2 Myr the greater part of Southwest Asia was warmer and drier than it is at present.

* Primates Fossils

During the Paleogene, most of western Asia was effectively part of the Eurasian landmass and thus separated from the island continent of Afrot-Africa, although it was broken up into a number of small tectonic plates. By ca. 18 Ma, the Afro-Arabian plate broke contact with Eurasia to its southeast, allowing the passage of terrestrial mammals, including primates, between the two areas. Cenozoic to the interpaguage was the westernmost part of Asia, with important early faunas in both South Asia and Turkey in the Mousterian. A hominid jaw fragment and several teeth from 17-18 Myr, named Hadarinae, and dated to ca. 17 Ma, document the originality of the African ape-like fauna across the Red Sea.
At this time, *Heliopusius* is very similar to the contemporaneous *Afropithecus* from northern Kenya, and together these form a clade with the earliest members of *Hominidae*.

The importance of this region as a migration corridor for higher primates during the Miocene is documented by the presence of several species of monkeys and apes. From Pujol and Csiki, western Turkish sites dated at ca. 16-15 Ma, come a partial mandible and hundreds of isolated teeth that can be identified as the kenyanapithecine *Griphopithecus*. Younger specimens from the Cappadocia beds (western Turkey, 9.8 Ma) were once termed *Simpithecus* but are now recognized as *Ambapithecus nemani*. This genus is similar to the pongine *Sanguchapithecus* from the Indo-Pakistani Swat lake, but it is less pongid-like retaining the conservative broader interorbital region and stronger sphenoid sinus. Two teeth originally named *Udnapithecus* but now included in *Dryopithecus* are known from the Georgien Republic on the northwestern margin of western Asia.

In the later Miocene, the southern European colobine monkey *Mesopithecus* is known from Maragheh (northwestern Iran) and Mokaiy, near Khash (Afghanistan); similar colobiines extend eastward into the Swatko. An isolated male canine not yet identifiable as to subfamily is known from one of several Late Miocene (ca. 8-6 Ma) localities in Abu Dhabi, Macaque monkeys probably also spread through the region in the Pleistocene, but the earliest fossils are from the Early Pleistocene of Ubedia (Israel). The probable macaque relative *Panidapithecus* is known by a species in Tadjikistan (at Kairak, ca. 1.9 Ma), apparently different from that known in southern Europe.
Early Paleolithic

During the Paleolithic, western Asia exhibited evidence both of early -defined Neolithic regions with influences (probably including numerous migrations) from adjacent regions. The earliest documented hominin presence in western Asia occurs at Ubeidiya (Israel), which dates to at least the end of the Middle Pleistocene (ca. 1.1 Ma) and probably to ca. 1.5 Ma. The site is marked by the presence of stone tools, including handaxes, cleavers, and scrapers, and is associated with abundance of animal bones, suggesting a focus on hunting and gathering. The earliest cultural evidence from Ubeidiya is dated to the early Middle Pleistocene and is characterized by the presence of large animal bones, indicating a hunting economy.

Later, during the late Middle Pleistocene, the region witnessed further developments, with the emergence of more sophisticated stone tool technologies, including the appearance of the Acheulean tradition (also known as the Acheulo-Yabrudian tradition) in Israel. The Acheulean tradition, characterized by handaxes, cleavers, and other large stone tools, is widely distributed across the Old World and is thought to have developed in response to the need for efficient cutting and butchering of large game. The Acheulean tradition is marked by the presence of large, bifacially worked stone tools, which are typically found in association with large herbivore bones, indicating a focus on肉类 hunting.

In conclusion, the Middle Pleistocene witnessed the emergence of more sophisticated stone tool technologies and the development of hunting and gathering economies in western Asia. These developments were likely influenced by environmental and climatic changes, which shaped the landscape and the dietary preferences of early hominins in the region.
mainly flake, with some cores. At Iselangur Cave, in Kyrgyzia, Mode 1 artifacts and human remains said to be H. erectus were recovered below a tautenite layer dated by uranium-series analysis to ca. 125 ka. Industries with hand-axes have been found in several localities in the Caucasus, again formally included in Europe. Aszh (Azerbaijan) and Kudaro (Russia) are the least ambiguous sites, with moderate lithic assemblages and, at Aszh, a human mandible. Faunal and pollen data indicate that these upland sites were first occupied during a warm interglacial period, supposedly early (Stage 9 or 7) but perhaps only Eemian (Stage 5e). While the lowest layer at Aszh contains Mode 1 in association with a Tarisopil fauna, the lower deposits at Kudaro contain handaxe industries that are associated with heaths.
Middle Paleolithic

The chronology of the Early-Middle Paleolithic transition in the Levant is somewhat unclear, due to large standard errors of the radiocarbon (C14) and electron spin resonance (ESR) dates in excess of 100 ka. Thus far, both the younger Magdalenian and the older Middle Paleolithic occurrences are between 200,000 and 130,000 B.P. Transitional assemblages have been identified in Unit X of A. Jelinek's Tabun excavations and in the vicinity of H. Kowar in Serbia, where they are referred to as the Hemimandl industry. During the Middle Paleolithic there is evidence of a sustained human presence in the Lisan-Gazraan Mountains, but the record of this period differs significantly from that of the Levant. Most Levantine sites like Kebara (Tiberias), Shanidar (Iraq), Sistan (Kurdistan, and Warsaw) all in Iran) preserve assemblages with generally low Levantine indices, heavily retouched tools, and predominantly centripetal core preparatory. These features prominently among the faunal remains from these sites, and the associated hominin fossils are Neanderthals—Shanidar (Level II) yielded nine Neanderthal skeletons, most of which was apparently buried with flowers and reflected in very high frequencies of flower pollen near the skeleton relative to amounts of such pollen elsewhere in and around the site. Another individual evidently was cared for following a crippling injury to his right arm. The radiocarbon dates for the latest human material at Shanidar (ca. 44 Ka) might be regarded as minimum (minimum) dates.

In the Levant, the record is somewhat better documented, although occupations of the upland desert are still rare. The principal Middle Paleolithic industry is known as the Levantine Mousterian. Key Levantine Mousterian cave sites include Tabun, Kebara, Amud, Qafzeh, Skhul (all in Israel), Jaffa, Acheul (near Tel Aviv), and Tosa (both in Jordan). Well-described open-air sites include Bir's Qeiyafa, Rosh Han Mora, and Nahal Amud (all in Israel). Levantine Mousterian assemblages, as a group, are made mainly on flint and feature high percentages of Levantoid tools. Blades are either common in Levantine Mousterian assemblages, scrapers are generally lightly retouched, and in contrast to European Mousterian assemblages, Levantoid points are very common. Several technologically unique industries of Levantine Mousterian have been recognized, and most assemblages are described in comparison to the assemblages from Tabun Cave (Levels B, C, and D). The most common animal remains found in Levantine Mousterian occupations include Bu pompeiius, Damia anatolica, Cetartid felidae, Sus scrofa, Castoroides, and Caprids. Levantine Mousterian sites furnish evidence for the controlled use of fire, heat of the dead, and the use of mineral pigments (red ochre). Limited horizontal exposures at Kebara Cave and Rosh Han Mora suggest a rather bipedal pattern of behavior and activity, presumably reflecting short-term occupations. Bu Pompeius preserves numerous broken bones of large mammals, a unique flint industry, and numerous handgrounding tools on the shore, and an ancient lake on the Golan Heights. Both Neanderthals and early modern humans occur in Levantine Mousterian contexts. Neanderthal fossils have been recovered from Amud, Tabun, Der'ach (Cvrat), and Kebara. Early modern human fossils have been found at Skhul and Qafzeh. 11 and ESR dates place the Skhul-Qafzeh fossils between 120 and 80 Ka, older than at least one of the Neanderthal fossils (probably also Amud and Der'ach). Moreover, it has been suggested that the mandible Tabun 2 (from Level C) fits with the slightly younger Skhul-Qafzeh population. While the Levantine Neanderthal level Tabun 1 provides evidence from either Layer C and the Skhul-aged Layer B. It is thus possible that an early Neanderthal preceded the more modern population.

The new data, including those that challenge the longstanding hypothesis of archaic modern human evolutionary continuity in this region, although some scholars continue to view all of these fossils as part of a single polymorphic population. Postulating of this latter hypothesis generally points to Neanderthals and early modern humans, similar archaic hominin species and numbers of people to hominins in the Levant. Others regard these associations as superficial reflections of behavioral patterns shared broadly among early modern humans. There is no evidence that both Neanderthals and early modern humans occupied the same site at the same time. The presence of hominins fossil material from the preceding Meghara makes it difficult to evaluate whether the Levantine Neanderthal or the Skhul-Qafzeh fossils bear the strongest resemblance to late Middle Pleistocene humans from western Asia.

Neanderthals are also known from the Teshik-Tash Cave in Uzbekistan (a juvenile burial with grave goods) and from the caves of Kish Koba and Smechovo in Crimea (Ukraine, thus the edge of Europe). Other than Teshik-Tash, Early Mousterian assemblages are rare in Central Asia, but two "Levantine Paleolithic" sites at Lakhim, near Kallar in south Tajikistan may be relevant. Both are found in paleo-uvground water channels dated only by regional correlatives to the last interglacial and are thus most unlikely that alternative correlations place the older. The older site, Lakhim I, produced 388 artifacts, including various types of scrapers and a few bone tools and elements of Levallois-like cores. Some tools are said to resemble European Clactonian or Tizian specimens, but the whole is thought by V. Kulah to be a local continuation of the Kulturom-Kabardino tradition rather than related to Western cultures, such as the Mousterian. The younger Lakhim II (Ozi-Mazar) assemblage is much smaller, with only 35 flakes and a few cores and wedges, but figured pieces resemble Mousterian scrapers and points. A variety of sites have been said to yield typologically Late Mousterian implements similar to those from Teshik-Tash. The cave of Darya is close in Afghanistan also yields Mousterian, but the human fossil originally thought to be Neanderthal may instead relate to early modern humans.

Upper Paleolithic

The transition from Middle to Upper Paleolithic in the Levant was once linked to an Eynan industry (that is, not recognized as a geological correlation of separate Middle and Upper Paleolithic elements, to site depositional age: Early Upper Paleolithic transitional industry occurs between 45 and 38 Ka at Ksar Akil and Boker Tachtit. These sites preserve ve
quences in which blanks for characteristically Upper Paleolithic tools (e.g., Levallois, Levallois points) were intentionally made on Levallois blanks and later made on prismatic blanks. The modern human fossils from Keur 'Akl ("Tighed") and the Upper Paleolithic terminal bones from Qafzeh are probably associated with this industry.

Upper Paleolithic assemblages dating between 28 and 20,000 years ago in the Levant are generally assigned to a specific cultural tradition. The earliest of these, the Abri-Mariani, is characterized by a well-developed blade/biface industry and is found throughout the Levant. The Abri-Mariani is represented at Keur 'Akl, Kefra, Qafzeh, and Galil-Dromit. The other industry, called Levallois Aurignacian, features a flake-based industry with lamellar retouch on catarinated scrapers and burins. Smaller retouched blades (35-38 mm) also occur in most assemblages. The oldest dates for the Levant Aurignacian derive from Hayonim, where a split-base bone point provides a further stylistic link to the European Aurignacian. The date of 34,600 ka, however, is at least 4-8 Kyr younger than the oldest Aurignacian sites in Europe (Bulgaria and Spain), and in temporal terms the old theory that aragonically modern humans bearing an Aurignacian culture moved into Europe from the Levant seems to contradict this. Southwest Asia, the Southeast Asian source for the European Aurignacian, must still be considered a possibility.

The Levant Aurignacian is known primarily from sites in the North-Central Levant, such as Keur 'Akl, Wadi 'Aijon, Kefra, Qafzeh, and Galil-Dromit. A partly related industry, the Baradashian, is characterized by high percentages of burins, some with a distinctive mushroom profile reminiscent of Aurignacian burins, and the distinctive catarinated scrapers and burred burins of the European and Levant Aurignacian are present in varying degrees in the Baradashian. The Baradashian appears earlier than the Levant Aurignacian, however, as evidence dates from Shu'arat (Level C) and Yabrud Cave in the eastern Galilee from levels 38 and 35 Ka. D.L. Jollie and E.L. Dibble showed in 1994 that the equivalent industry at Wadi 'Aijon and the Baradashian sites are both Levant Aurignacian and Central European Aurignacian (and Abri-Mariani) assemblages, including regional variation and the occurrence of typical European tools and implements. They suggested that the Baradashian be renamed the Qafzeh Aurignacian to reflect its likely affinities.

In some sites in which horizontal sequences have been made, Upper Paleolithic levels have preserved discrete hearths and knapping areas. Abri-Mariani sites excavated in the Wadi Abu Nmrah, however, may yield additional information about site structure. Ochre is often found in Upper Paleolithic sites, and ochre-grinding stones were found in Qafzeh in Level G. However, neither the Upper Paleolithic sites in the Zagros nor their counterparts in the Levant preserve mural or portable art comparable to that seen in the European Upper Paleolithic.
Lithic cultures are known from this period, the Geometric Kebirian and the Mushabian. The Geometric Kebirian, as its name suggests, exhibits numerous technological and typological continuities with the Kebirian, differing mainly in favoring geometric microliths (chiefly trapezes). Geometric Kebirian sites vary widely in size, from substantial sites like Neveh David on Mount Carmel to smaller lithic scatters in the Sinai. A different industry, the Mushabian, is marked by deeply arched microliths and the frequent use of the mi- nihabat technique. The Mushabian is found exclusively in the arid interior southern Levant (e.g., Sinai), suggesting it could represent an arid-land adaptation. Some researchers have noted stylistic continuities between the Mushabian and the Nera-Maurian of North Africa, suggesting the Mushabian may represent a migration of African groups into the southern Levant.

In the Zagros, the earliest domestication of the dog, is reported from a Zarzi site, Psegahe (Iraq Kurdistan) dated to ca. 14 Ka. Oak wood suggests that acorns (and the often-associated pistachio) had become available for fall harvesting; wild cereal grasses, such as wheat and barley may have accompanied oak as it reoccupied the area after 11 Ka. As in
the Levant, a number of sites contain grindstones, which may have been multipurpose implements used in crushing, hand-husked grains, and pigments.

Transitions to Food Production and Village Life

In the Jordanian desert, a period of incipient changes in the Levant witnessed the appearance of the Epipaleolithic Natufian culture. Natufian sites occur throughout the Levant, but the largest sites are located in the south-palestine forests in the coastal lowlands. Natufian sites include both caves (Habura, Hayonim, Nahal Oren) and open-air localities (Ain Mallaha/El Yarmuk, Hebron, Keshim). Natufian lithic assemblages display more Neolithic characteristics produced with the new embryonic technique. Bone tools increased in number and sophistication and included harpoons, fishhooks, projectile points, awls, needles, and scrapers. Large ground-stone mortars and pestles are believed to have been used primarily for pounding nuts, but possibly cereals as well. Rare backed blades with wide polish, and a variety pattern referable to prolonged cutting of cereals, together with actual bone or cedar wood blanks with embedded backed blades, may suggest incipient plant cultivation. Gazelle as the most abundant species at most Natufian sites. Several sites have also yielded skeletal remains of domesticated dog, among the earliest known occurrences of Canis familiaris. Unlike their Upper Paleolithic predecessors, Natufian groups carved elaborate bone and stone artifacts, including both anthropomorphic and zoomorphic forms. Animal domestication, particularly beef, is suggested by tools from such sites as Mugharet el-Habis and Hayonim. Archaeologists also note that some of the earliest evidence for the domestication of plants comes from Natufian sites. For example, the remains of pumpkin seeds have been found at the Natufian site of Hayonim.

The Beginning of Agriculture

There is evidence that agriculture began in the Fertile Crescent around 10,000 B.C. Families of farmers started to live in permanent villages, and their surplus allowed for the development of social and economic systems. The earliest known examples of farming in the Middle East include the Natufian culture in the Levant and the Natufian culture in the Arabian Peninsula. These early farmers practiced a combination of horticulture and herding, and their agricultural practices allowed them to settle in permanent villages and establish complex social and economic systems. The domestication of plants and animals, such as wheat, barley, sheep, and goats, played a crucial role in the development of these early agricultural societies. The transition from hunting and gathering to farming marked a significant change in human history, leading to the development of civilizations and the rise of urban societies.
The Development of Complex Societie

Throughout Southwestern Asia, the Neolithic period in the eighth and seventh millennia BP represents a period of a

gonal coalization and growing interregional differentiation. Villages like Haji Pirouz and Gunay (Iraq), Yaxin (Urum Daghkhl, Homarw, Hafet, and Tell el-Yassen (Iraq), Halac and Merjina (Turkey), Qahsho (Jordan), Mabata (Israel), and Brikia (Syria) were based largely on plant cultivation and stock breeding: their inhabitants lived in agglomerated, multistoried, rectangular structures: some with courtyards and upper stories: they made ceramics, textiles, tools, metal objects, and personal ornaments, as well as figurines of stone, bone, and wood or other materials. It was on this broad foundation that increasing social differentiation and occupational specialization developed. Pottery, whose manufacture was presumably at first a cottage industry, varied significantly from one region to another. Equally, the ceramic crafts, which requires special skills and abun-
dant fuel, came to be controlled by a small number of specialists whose were traded amongst, and distributed among, a larger population. Early pottery may have included copper metal; in which early experiments had been undertaken at Gurus, the carving of stone and bone tools. Possibly used as sigmata or as sigmata for painting tex-
tiles and the making of stone into drums, ornaments, and small fish. A few small baskets, such as Hacifirat and Tell el-Yassen (Iraq), were ornamented by large walls, perhaps defensive in nature. Other had structures provisionally identified as rivers. At a few sites of the sev-
eventh millennium BP the period of Mesopotamia, there is evidence pointing to the development of irrigation canals (e.g., Choga Must), signifying the concomitant rise of organizational principles by which decisions governing ab-

origin can be traced, because their chemical and microstruc-

tural composition is idiosyncratic (they are "fingerprinted" by s

such techniques as X-ray spectroscopy and neutron activa-
tion). The period 12–8 Ka saw populations becoming increas-
ingly sedentary, with the development of villages as a settlement type, increasing interregional interaction in the form of exchange for exotic materials (evidently including, is a few cases, plants and animals), increasing regionalism, and growing diversification in the subsistence base and control over an ever-widening range of domesticates. Such as Jericho and at Catal Hoyuk, there is substantial evidence that not all interregional or interregional contacts were powerful. At Jericho, the evidence yields the form of substan-
tial defensive walls dating to 8500 BP, while at Catal Hoyuk the contiguous houses were built without ground-level en-
trees, so as to present a solid wall to the outside (presum-
ably they were surrounded by retraceable ditches to an upper story or the roof). In addition, a relatively large proportion of the male skeletons from Catal Hoyuk had suffered trans-
verse fractures of the left forearm—the shield arm for a right-handed person. The Catal Hoyuk skeletons also exhibit substantial evidence for the development of genetic di-mye related to maternal existence, and thus, indirectly, for the emergence of this practice as a consequence of seden-
tivity and increased agriculture. In general, the dead from this period, often buried in excarnation, provide some evidence for social differentiation: burials were not standardized, and some were accompanied by comparatively elaborate, exotic, and, therefore, presumably costly grave goods.

Many sites were occupied for several generations: large, for centuries. The effect of large burial populations at some sites suggests the early use of specialized disposal grounds, but there are no substantial cemeteries yet known from the early time range.
and canal-digging and -cleaning tasks assigned. At the same
time, these modifications in the landscape imply the growing
need to intensify agrarian production, although whether to
meet the needs of an expanding population, the whims of a
bubbling elite, or the desire for a surplus to exchange for
skills, labor, or exotic materials is unclear. During this pe-
riod, settlements became increasingly diverse in location,
size, and function. Some sites, such as Tepe Tula'i (Iran), may
be the epigonal remains of early specialized pastoral no-
mads; others may have served as regional centers of trade,
transport, production, and administration.

By the end of the sixth millennium BP, some centers had
become quite large, with areas of ten or more hectares imply-
ing populations exceeding 1,000. A number of these sites,
not only in Mesopotamia proper (Uruk, Eridu, Nippur) but
also in northern Syria (Tell Brak, Habuba Kabira) and west-
ern Iran (Godin Tepe, Susa, Chogha Mami), have yielded clear
evidence of the world’s earliest writing: clay tablets inscribed
in cuneiform in the unrelated languages Sumerian, Proto-
Elamite, and Alalakh. Deciphering of the texts has added
immeasurably to our understanding of the ancient Near East,
since it permits us to read the records of administrative trans-
actions, lists of kings, letters, poems, marriage and divorce
contracts, ledgers, schoolboys’ exercises, myths, religious and
omens texts, pharmaceutical receipts, legal codes, historical
narratives, city archives, travel itineraries, trade documents,
accounts of sales of land, slaves, and animals, and bilingual
dictionaries (left by the thousands at scores of sites over a pe-
riod exceeding 3,000 years). From such texts, kings’ lists have
been compiled, relations between cities and between nations
have been reconstructed, and many aspects of daily life in this
early civilization have been fleshed out. There is rich evi-
dence for complex division of labor, marked status differenti-
ation (with social groups ranging from royalty to slaves), a
polytheistic region associated with specialized officials and
dedicated temples and ritual, sprawling and internally diffe-
rentiated cities, abundant and representative art that some-
times depicts military activities, and hierarchical bureaucra-
cies. Civilization, a term much abused, is not discussed
here, but it is fair to say that it would not have been possible
without the developments of the Late Pliocene and Early
Holocene.

See also: Acheulean; Abraviani; ‘Ain ghazal; Amud Cave;
Amudian; Arikaraphaetans; Archaios Homo sapiens; Archaios
Modernos; Beidha; Boker Yachtzi; Broad-Spectrum Revolu-
tion; Çatal Hüyüğü; Cenospherean; Colobinae; Complex
Societies; Domestication; Dyrospherean; El Wayl;