Transient Floral Change and Rapid Global Warming at the Paleocene-Eocene Boundary

Scott L. Wing,1* Guy J. Harrington,2 Francesca A. Smith,1,3 Jonathan I. Bloch,4 Douglas M. Boyer,5 Katherine H. Freeman3

Rapid global warming of 5° to 10°C during the Paleocene-Eocene Thermal Maximum (PETM) coincided with major turnover in vertebrate faunas, but previous studies have found little floral change. Plant fossils discovered in Wyoming, United States, show that PETM floras were a mixture of native and migrant lineages and that plant range shifts were large and rapid (occurring within 10,000 years). Floral composition and leaf shape and size suggest that climate warmed by ~5°C during the PETM and that precipitation was low early in the event and increased later. Floral response to warming and/or increased atmospheric CO₂ during the PETM was comparable in rate and magnitude to that seen in postglacial floras and to the predicted effects of anthropogenic carbon release and climate change on future vegetation.

At the beginning of the Eocene Epoch ~55.8 million years ago, global temperatures increased by 5° to 10°C over a period of ~10 to 20 thousand years (ky) then returned to warm background climates over the succeeding ~100 ky (1–4). This event, the Paleocene-Eocene Thermal Maximum (PETM) (5), coincided with a global negative carbon isotope excursion (CIE) and calcium carbonate dissolution in the deep ocean, which are consistent with a large release of δ¹³C-depleted carbon to the ocean and atmosphere (6). Several sources have been proposed for this carbon: ocean-floor clathrates (7), thermogenic methane (8), and burning of peat and/or shallowly buried coals (9).

Biotic events at the PETM include mass extinction among benthic foraminifera (10), changes in the latitudinal range and species composition of marine plankton (11, 12), and shifts in the taxonomic and trophic composition of terrestrial vertebrate faunas, probably after dispersal over high-latitude land bridges (13, 14). Although the diversity and distribution of terrestrial plants are strongly influenced by climate today, previous work has shown little mega- or palynofloral change across the Paleocene-Eocene interval (15–19). Here we report terrestrial megafloras from the PETM and use them to infer change in the climate and floral composition in the interior of North America.

Geological framework. Our data come from the upper Fort Union and lower Willwood formations in the Cabin Fork drainage, southeastern Bighorn Basin, Wyoming, United States (~43.96°N, 107.65°W) (Fig. 1). These sediments were deposited by small fluvial systems near the margin of a subsiding intermontane basin, and they preserve a suite of environments including small channels, floodplain paleosols and swamps, and abandoned channel fills. We measured strata with a Jacob’s staff and sighting level, then correlated sections by tracing beds with a differential Global Positioning System to create a stratigraphic and biostratigraphic framework with ~1-m resolution (Fig. 2).

Two lines of evidence establish the PETM age of these strata: mammalian biostratigraphy and δ¹³C of paleosol organic matter. Fossil mammals indicating the late Paleocene Clarkforkian North American Land Mammal Age (NALMA) were found from 5 to 22 m below the top of the Fort Union formation (Fig. 2). The main fossiliferous layer is a laterally extensive, ferruginous, pebble conglomerate that has produced ~200 specimens and 11 species. The presence of Copocion, an abundance of Phenacodus and Ectocion, and the absence of Hyracotherium indicate that this fauna belongs to the latest Clarkforkian zone CF-3 (20, 21). The earliest Eocene mammals (Wasatchian NALMA, the Wa-0 zone), which occur within the CIE in other areas (19, 21–25), come from the lowest 37 m of the Willwood formation. Nineteen species are represented among 233 specimens, including diagnostic Wa-0 taxa (Arfia junnei, Copocion davisii, Hyracotherium sandrae, and Diacodexis illicis) (25). The lowest Wa-0 fossils come from paleosols and clay clast accumulations in sandstones 3 to 5 m above the base of the Willwood formation and 8 m above the highest Clarkforkian mammals. The highest Wa-0 fossils occur 37 m above the base of the Willwood formation and 3 m below three thick, laterally persistent, red paleosols. In the Cabin Fork area, the highest of these three persistent paleosols (at 47 m) produced 10 species of mammals, including Cardiolo- phus radinskyi, which defines the succeeding Wa-1 faunal zone (25) (Fig. 2). Thus, the Wa-0 faunal zone in the Cabin Fork area is at least 34 m thick and is bounded by CF-3 and Wa-1 faunas.

We measured the carbon isotopic composition of bulk organic matter (δ¹³Corg) from mud-rock paleosols in the same sections (26) (Fig. 2A and fig. S1). δ¹³Corg ranged from –22 to ~28.5 per mil (%o) and, when grouped into PETM and non-PETM samples based on faunal criteria, was strongly negatively correlated with the weight percent of organic carbon (wt % Corg), which varies from 3.6% to 0.05% (Fig. 1 and table S1). We plotted deviations of δ¹³Corg from the values expected based on wt % Corg for the carbon isotope curve shows a sharp excursion of ~3.3‰, starting 2 to 3 m below the lowest occurrence of Wa-0 mammals. The magnitude of the CIE is similar to that in soil organic matter at Polect Bench in the northern Bighorn Basin (27) (Fig. 2B). Our isotope anomaly values range from 2 to 3‰ below background values throughout the 50 m of section above the base of the CIE, with the exception of a single more positive sample at 5 m (Fig. 2A) that was poorly consolidated and contaminated with modern roots. The lowest Wa-1 mammals occur within the upper part of the CIE, as is seen at Polect Bench (27) (Fig. 2B).

Fig. 1. The location of the Cabin Fork and Polect Bench PETM sections. Solid dots indicate Paleocene and Eocene sites with plant types that are restricted to the PETM in northern Wyoming.
Floral composition and migration.

Plant fossils were collected from lenticular channel fills 3 to 5 m thick and 50 m across. Because of small-scale downcutting and redeposition, plant fossils are slightly younger than overbank deposits at the same level; however, the continuous floodplain paleosols above the channel fills are within the PETM, as indicated by vertebrate fossils and/or $\delta^{13}C_{org}$ anomaly values.

Two localities, SW0410 and SW0307 (3 and 37 m above the base of the CIE, respectively), produced a total of 398 plant mega-fossil specimens (136 and 262, respectively (Table S3)). The lower locality has nine leaf morphospecies, including six dicots, one palm, and one fern. The upper locality has 20 leaf morphospecies, including 17 dicots, one palm, and two ferns. In composition, both PETM megafossil localities are dominated by morphospecies that have not been recognized in extensive collections (~30,000 specimens from >300 localities) from the late Paleocene and early Eocene of the Bighorn Basin (Fig. 3) (28).

The lower flora is dominated by an undescribed, mimosoid legume leaflet and contains leaves similar to “Artocarpus” lessigiana (Lesquereux) Knowlton, a taxon known from the Paleocene and Eocene of the Denver Basin, Mississippi Embayment, and California.

Fig. 2. Comparison of PETM records. (A) The Cabin Fork section, showing meter levels, formations, faunal zones, lithology, fossil sites, and $\delta^{13}C_{org}$ anomaly values (26). (B) The Polecot Bench section, showing $\delta^{13}C_{org}$ faunal zones, and meter levels (27). (C) $\delta^{13}C$ of bulk carbonate at Ocean Drilling Program (ODP) site 690B (in the Southern Ocean), with the time scale from Farley and Eltgroth (3). Wa, Wasatchian; Cf, Clarkforkian; M, Meniscotherium Zone. Paleocene fossils are indicated with blue symbols, PETM with red, and post-PETM Eocene with green. Carbon isotope units are in $\%$ Pee Dee belemnite. Dashed orange lines indicate correlations of carbon isotope curves. Dashed vertical lines are mean $\delta^{13}C$ values for the latest Paleocene.

Fig. 3. Change in floral composition analyzed with detrended correspondence analysis (DCA). Each bivariate plot was generated by DCA of a sites-by-species matrix of presence/absence data. Arrows indicate the temporal sequence. (A) Palynofloral analysis: Axis I, 11.5% of variance; Axis II, 5% of variance. (B) Megaforal analysis: Axis I, 3% of variance; Axis II, 2% of variance. Paleocene samples are indicated with blue diamonds, Eocene samples with green triangles, and PETM samples with red squares. PETM samples are compositionally distinct from both Paleocene and Eocene ones and from each other.
PETM, as has been widely reported in late Palaeocene literature, is consistent with species migration from south, east, and Europe, along with the persistence of native species. The appearance during the PETM of both intra- and intercontinental floral immigrants mirrors the pattern seen in the fauna, which includes both intracontinental (Menispermum) and intercontinental (Hyaenodon) creodont migrants (14, 21).

Paleoclimate. Leaf margin analysis (LMA) (38, 39) of the 23 dicot leaf morphospecies from the two localities yielded a MAT estimate of 19.8 ± 3.1°C for the PETM [the error is 1 SD, following Wilf (39)]. This is 4.9°C higher than the MAT (15.7 ± 2.4°C) estimated from LMA of floras from the 250-ky interval immediately before the PETM in the same region and 1.6°C higher than the MAT (18.2 ± 2.3°C) for the 400-ky interval after the PETM (40). Oxygen isotopic composition of biogenic apatite from the Bighorn Basin indicates even higher temperature changes in the PETM (26°C) (35). Modern riparian and wetland vegetation has a higher proportion of toothed species than terra firma forests, commonly resulting in 2.5 to 7°C underestimates of MAT (41, 42). All the fossil floras used to estimate MAT were deposited in fluvial backswamps or channel margins (28); paleotemperature estimates are therefore likely to be uniformly low. However, the ~5°C warming estimated from LMA is consistent with isotopic temperature estimates.

We used leaf area analysis (LAA) (43) to estimate mean annual precipitation (MAP) at 123 cm (the standard error of the regression is +177/~86 cm) for the combined PETM flora. A different regression derived from a modern data set with more dry sites (44) yielded an MAP estimate of 120 cm. The marked increase in leaf size from the lower to the upper PETM megaflores (figs. S2 and S3) led us to estimate MAP separately for each site. By using the two regressions (43, 44) we estimate a MAP of 80 +114/~56 cm and 41 cm for the lower flora. Map estimates for the upper flora were 144 +206/~100 cm and 132 cm. Although the MAP estimate for the lower flora was derived from only six morphospecies, the two with the smallest leaves (nanophyll-microphyll) are also the most abundant, indicating that small-leaved species were local dominants. MAP estimates for the late Paleocene in southern Wyoming average 138 cm (45), suggesting that rainfall declined by ~40% near the onset of the PETM then recovered to normal values by late in the event. A warm, wet climate late in the PETM is consistent with the exceptionally thick paleosols preserved from the upper part of the event (Fig. 2) (46).

Previous studies of the PETM have yielded mixed evidence for precipitation change. A higher abundance of terrestrial palynomorphs and eutrophic dinoflagellates in nearshore marine sediments has been cited as evidence of more runoff and higher precipitation (18, 47), as has the greater magnitude of the CIE in pedogenic carbonate nodules than in marine carbonates (48). In contrast, the continental record of the PETM in Spain suggests a persistently or seasonally dry climate (49), and a possible PETM section in southern England has exceptional amounts of fossil charcoal (50).

Without wider geographic coverage, we do not know if the short period of dry climate we infer at the onset of the PETM is regional or global. However, even if it was confined to the northern Rocky Mountain region, it could have had an important positive feedback on climate by increasing the likelihood of burning in the extensive upper Paleocene peats and coals of the Powder River Basin (9).

Conclusion. The PETM provides an important analog to present-day anthropogenic global warming, because the two episodes are inferred to have similar rates and magnitudes of carbon release and climate change (6). In this context, it is notable that terrestrial floras underwent rapid (within ~10 ky), individualistic range change during the PETM, including both intra- and intercontinental migration. Plant range changes of similar scale may occur with anthropogenic climate change. Fossils revealing this dramatic, transient, floral response to PETM warming eluded years of focused searching, suggesting that other such short-term shifts in floral composition remain to be uncovered from the “deeper” time record of ecological change.

References and Notes

5. The PETM is also known as the Initial Eocene Thermal Maximum (IETM).
Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin’s Effects on Food Intake

Jian V. Zhang, Pei-Gen Ren, Orna Avsian-Kretchmer, Ching-Wei Luo, Rami Rauch, Cynthia Klein, Aaron J. W. Hsueh*

Ghrelin, a circulating appetite-inducing hormone, is derived from a prohormone by posttranslational processing. On the basis of the bioinformatic prediction that another peptide also derived from proghrelin exists, we isolated a hormone from rat stomach and named it obestatin—a contraction of obese, from the Latin "obedere," meaning to devour, and "statin," denoting suppression. Contrary to the appetite-stimulating effects of ghrelin, treatment of rats with obestatin suppressed food intake, inhibited jejunal contraction, and decreased body-weight gain. Obestatin bound to the orphan G protein–coupled receptor GPR39. Thus, two peptide hormones with opposing action in weight regulation are derived from the same ghrelin gene. After differential modification, these hormones activate distinct receptors.

The increasing prevalence of obesity is a global problem. Body weight is regulated in part by peptide hormones produced in the brain or gut or both (1). Earlier studies on synthetic and peptide growth hormone (GH) secretagogues (2–4) led to the identification of a specific G protein–coupled receptor (GPCR), the GH secretagogue receptor (GHSR) (5, 6), and subsequently to the discovery of its endogenous ligand, ghrelin (7), a gut-derived circulating hormone that stimulates food intake (4, 8).

Human ghrelin, a 28–amino acid peptide, is derived by posttranslational cleavage from a prepropeptide of 117 residues. On the basis of bioinformatic searches of putative hormones derived from the prepropeptides of known peptide hormones, we identified a ghrelin-associated peptide. We searched GenBank for orthologs of the human ghrelin gene and compared preproghrelin sequences from 11 mammalian species. In addition to the known ghrelin mature peptide, which immediately follows the signal peptide, we identified another conserved region that was flanked by potential convertase cleavage sites (fig. S1, underlined). This region encodes a putative 23–amino acid peptide, with a flanking conserved glycine residue at the C terminus, suggesting that it might be amidated (9). We named this ghrelin-associated peptide obestatin.

Characterization of endogenous obestatin. To detect endogenous obestatin, we prepared a synthetic obestatin peptide and performed radioimmunoassays on rat-tissue extracts with obestatin-specific antibodies. As shown in Fig. 1A, the stomach extract displaced 125I–obestatin binding to the obestatin antibodies. Obestatin-like activities from stomach extracts were purified. Immunoreactive (ir) obestatin was eluted in a Sephadex G-50 gel permeation column (Amersham Biosciences, Piscataway, NJ) with estimated sizes of 2.6 and 1.5 kilodaltons (kD), distinct from the elution position of mature ghrelin (Fig. 1B). We subjected peak 1 (2.6 kD) fractions to ion-exchange fast protein liquid chromatography (FPLC). A single peak of ir obestatin was eluted (Fig. 1C) and shown by mass spectrometry and Edman sequencing to contain a peptide with a molecular mass of 2516.3 (Fig. 1D) and with a sequence of I125-obestatin binding to the obestatin antibodies.

5 July 2005; accepted 10 October 2005
10.1126/science.1116913